Точка пересечения диаметров окружности. Общее уравнение прямой. Условие параллельности прямых

Окружность - это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность - это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.

Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.

Отрезок, соединяющий две точки окружности, называется хордой . Хорда, проходящая через центр окружности, представляет собой диаметр . Диаметр окружности равен ее удвоенному радиусу: D = 2R .


Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2

Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.

Отрезки касательных к окружности, проведенные из одной точки, равны : AB = AC, центр окружности лежит на биссектрисе угла BAC.

Квадрат касательной равен произведению секущей на ее внешнюю часть

Центральный угол - это угол, вершина которого совпадает с центром окружности.

Дугой называется часть окружности, заключенная между двумя точками.

Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.

Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.

Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.

Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.

Периметр сектора: P = s + 2R.

Площадь сектора: S = Rs/2 = П R 2 а /360°.

Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.

Прямая

Плоскость

Общее уравнение прямой. Нормальный вектор.

Уравнение прямой с угловым коэффициентом.

Уравнение прямой в отрезках на осях. Уравнение прямой, проходящей

через две различные точки. Параметрическое уравнение прямой.

Условие параллельности прямых. Условие перпендикулярности прямых.

Расстояние между двумя точками. Расстояние от точки до прямой.

Расстояние между параллельными прямыми. Угол между прямыми.

Общее уравнение прямой:

Ах + Ву + С = 0 ,

где А и В не равны нулю одновременно.

Коэффициенты А и В являются координатами нормального вектора прямой (т.е. вектора, перпендикулярного прямой). При А = 0 прямая параллельна оси ОХ , при В = 0 прямая параллельна оси ОY .

При В 0 получаем уравнение прямой с угловым коэффициентом :

Уравнение прямой, проходящей через точку (х 0 , у 0 ) и не параллельной оси OY , имеет вид:

у у 0 = m (x х 0) ,

где m угловой коэффициент , равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ .

При А 0, В 0 и С 0 получаем уравнение прямой в отрезках на осях :

где a = – C / A , b = – C / B . Эта прямая проходит через точки (a , 0) и (0, b ), т.е. отсекает на осях координат отрезки длиной a и b .

Уравнение прямой, проходящей через две различные точки (х 1 , у 1) и (х 2 , у 2):

Параметрическое уравнение прямой , проходящей через точку (х 0 , у 0 ) и параллельной направляющему вектору прямой (a , b ) :

Условие параллельности прямых:

1) для прямых Ах+ Ву+ С = 0 и Dх+ Eу+ F = 0: AE BD = 0 ,

2) для прямых у = m x+ k и у = p x+ q : m = p .

Условие перпендикулярности прямых:

1) для прямых Ах+ Ву+ С = 0 и Dх+ Eу+ F = 0: AD + BE = 0 ,

2) для прямых у = m x+ k и у = p x+ q : m p = – 1 .R > 0 называется радиусом окружности .


Уравнение окружности радиуса R с центром в точке О (х 0 , у 0) имеет вид:

(х х 0) 2 + (у у 0) 2 = R 2 .

Если центр окружности совпадает с началом координат , то уравнение окружности упрощается:

х 2 + у 2 = R 2 .

Пусть Р (х 1 , у 1) – точка окружности (рис.1), тогда уравнение касательной к окружности в данной точке имеет вид:

(х 1 – х 0) (х х 0) + (у 1 – у 0) (у у 0) = R 2 .

Условие касания прямой y = m x + k и окружности х 2 + у 2 = R 2:

k 2 / (1 + m 2) = R 2 .

Формы круга, окружности мы встречаем повсюду: это и колесо машины, и линия горизонта, и диск Луны. Математики стали заниматься геометрической фигурой - кругом на плоскости - очень давно.

Кругом с центром и радиусом называется множество точек плоскости, удаленных от на расстояние, не большее . Круг ограничен окружностью, состоящей из точек, удаленных от центра в точности на расстояние . Отрезки, соединяющие центр с точками окружности, имеют длину и также называются радиусами (круга, окружности). Части круга, на которые он делится двумя радиусами, называются круговыми секторами (рис. 1). Хорда - отрезок, соединяющий две точки окружности, - делит круг на два сегмента, а окружность – на две дуги (рис. 2). Перпендикуляр, проведенный из центра к хорде, делит ее и стягиваемые ею дуги пополам. Хорда тем длиннее, чем ближе она расположена к центру; самые длинные хорды - хорды, проходящие через центр, - называются диаметрами (круга, окружности).

Если прямая удалена от центра круга на расстояние , то при она не пересекается с кругом, при пересекается с кругом по хорде и называется секущей, при имеет с кругом и окружностью единственную общую точку и называется касательной. Касательная характеризуется тем, что она перпендикулярна радиусу, проведенному в точку касания. К кругу из точки, лежащей вне его, можно провести две касательные, причем их отрезки от данной точки до точек касания равны.

Дуги окружности, как и углы, можно измерять в градусах и его долях. За градус принимают часть всей окружности. Центральный угол (рис. 3) измеряется тем же числом градусов, что и дуга , на которую он опирается; вписанный угол измеряется половиной дуги . Если вершина угла лежит внутри круга, то этот угол в градусной мере равен полусумме дуг и (рис. 4,а). Угол с вершиной вне круга (рис. 4,б), высекающий на окружности дуги и , измеряется полуразностью дуг и . Наконец, угол между касательной и хордой равен половине заключенной между ними дуги окружности (рис. 4,в).


Круг и окружность имеют бесконечное множество осей симметрии.

Из теорем об измерении углов и подобия треугольников следуют две теоремы о пропорциональных отрезках в круге. Теорема о хордах говорит, что если точка лежит внутри круга, то произведение длин отрезков проходящих через нее хорд постоянно. На рис. 5,a . Теорема о секущей и касательной (имеются в виду длины отрезков частей этих прямых) утверждает, что если точка лежит вне круга, то произведение секущей на ее внешнюю часть тоже неизменно и равно квадрату касательной (рис. 5,б).

Еще в древности пытались решить задачи, связанные с кругом, - измерить длину окружности или ее дуги, площадь круга или сектора, сегмента. Первая из них имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернуть ее и приложить к линейке или же отметить на окружности точку и «прокатить» ее вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой («пи» - начальная буква греческого слова perimetron, которое и означает «окружность»).

Однако древнегреческих математиков такой эмпирический, опытный подход к определению длины окружности не удовлетворял: окружность - это линия, т.е., по Евклиду, «длина без ширины», а таких нитей не бывает. Если же мы катим окружность по линейке, то возникает вопрос: почему при этом мы получим длину окружности, а не какую-нибудь другую величину? К тому же такой подход не позволял определить площадь круга.

Выход был найден такой: если рассмотреть вписанные в круг правильные -угольники , то при , стремящемся к бесконечности, в пределе стремятся к . Поэтому естественно ввести следующие, уже строгие, определения: длина окружности - это предел последовательности периметров правильных вписанных в окружность -угольников, а площадь круга - предел последовательности их площадей. Такой подход принят и в современной математике, причем по отношению не только к окружности и кругу, но и к другим кривым или ограниченным криволинейными контурами областям: вместо правильных многоугольников рассматривают последовательности ломаных с вершинами на кривых или контурах областей, а предел берется при стремлении длины наибольшего звена ломаной к нулю.

Аналогичным образом определяется длина дуги окружности: дуга делится на равных частей, точки деления соединяются ломаной и длина дуги полагается равной пределу периметров таких ломаных при , стремящемся к бесконечности. (Подобно древним грекам, мы не уточняем само понятие предела - оно относится уже не к геометрии и было вполне строго введено лишь в XIX в.) и называется радианной мерой этого угла и всех отвечающих ему дуг с центром в, ибо она представляется как разность или сумма (рис. 1, 2) площадей соответствующих сектора и треугольника

Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это - точки ее касания с четырьмя окружностями специального вида (рис. 2). Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек и называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой - его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.

Геометрическое место точек. Круг и окружность

Геометрическое место точек. Срединный перпендикуляр . Биссектриса угла.

Окружность. Круг. Центр окружности. Радиус. Дуга. Секущая. Хорда.

Диаметр. Касательная и её свойства. Сегмент. Сектор. Углы в круге.

Длина дуги. Радиан. Соотношения между элементами круга.

Геометрическое местоточек этомножество всех точек,удовлетворя ющихопределённым заданным условиям.

П р и м е р 1. Срединный перпендикуляр любого отрезка есть геометрическое

место точек (т.е. множество всех точек), равноудалён ных от

концов этого отрезка. Пусть PO AB и AO = OB:

Тогда, расстояния от любой точки P, лежащей на срединном перпендикуляре PO, до концов A и B отрезка AB одинаковы и равны d .

Таким образом, каждая точка срединного перпендикуляра отрезка обладает следующим свойством: она равноудалена от концов отрезка.

П р и м е р 2. Биссектриса угла есть геометрическое место точек, равноудалённых от его сторон .

П р и м е р 3. Окружность есть геометрическое место точек (т.е. множе ство

всех точек), равноудалённых от её центра (на рис. пока зана одна

из этих точек – А).

Окружность - это геометрическое место точек (т.е. множество всех точек) на плоскости , равноудалённых от одной точки, называемой центром окружности. Отрезок, соединяющий центр окружности с какой-либо её точкой, называется радиусом и обозначается r или R . Часть плоскости, ограниченная окружностью, называется кругом . Часть окружности (

Am B , рис.39 ) называется дугой. Прямая PQ , проходящая через точки M и N окружности ( рис.39 ), называется секущей, а её отрезок MN , лежащий внутри окружности - хордой.


Хорда, проходящая через центр круга (например, BC, рис.39), называется диаметром и обозначается d или D . Диаметр – это наибольшая хорда, равная двум радиусам (d = 2 r ).

Касательная. Предположим, секущая PQ (рис.40) проходит через точки K и M окружности. Предположим также, что точка M движется вдоль окружности, приближаясь к точке K. Тогда секущая PQ будет менять своё положение, вращаясь вокруг точки K. По мере приближения точки M к точке K секущая PQ будет стремиться к некоторому предельному положению АВ. Прямая AB называется касательной к окружности в точке K. Точка K называется точкой касания. Касательная и окружность имеют только одну общую точку – точку касания.

Свойства касательной.

1) К асательная к окружности перпендикулярна к радиусу, проведенному в точку касания ( AB OK, рис.40) .

2) Из точки, лежащей вне круга, можно провести две касательные к одной и той же окружности; их отрезки равны (рис.41).

Сегмент – это часть круга, ограниченная дугой ACB и соответствующей хордой AB (рис.42). Длина перпендикуляра CD, проведенного из середины хорды AB до пересечения с дугой ACB, называется высотой сегмента.

Сектор эточасть круга,ограниченная дугой Am Bи двумя радиусами OAи OB, проведенными к концам этой дуги (рис.43).

Углы в круге. Центральный угол угол, образованный двумя радиусами ( AOB, рис.43). Вписанный угол – угол, образованный двумя хордами AB и AC, проведенными из их одной общей точки (BA C, рис.44). Описанный угол – угол, образованный двумя касательными AB и AC, проведенными из одной общей точки ( BAC, рис.41).

Длина дуги окружности пропорциональна её радиусу r и соответствующему центральному углу :

l = r

Таким образом, если мы знаем длину дуги l и радиус r , то величина соответствующего центрального угла

может быть определена их отношением: = l / r .

Эта формула является основой для определения радианного измерения углов. Так, если l = r , то = 1, и мы говорим, что угол равен 1 радиану (это обозначается: = 1 рад ). Таким образом, мы имеем следующее определение радиана как единицы измерения углов: радиан – это центральный угол ( AOB, рис.43), у которого длина дуги равна её радиусу (Am B = AO , рис.43). Итак, радианная мера любого угла – это отношение длины дуги, проведенной произвольным радиусом и заключённой между сторонами этого угла, к её радиусу. В частности, в соответствии с формулой длины дуги, длина окружности C может быть выражена следующим образом:

где определяется как отношение C к диаметру круга 2 r :

= C / 2 r .

Иррациональное число; его приближённое значение 3.1415926…

С другой стороны, 2- это круговой угол окружности, который в градусной системе измерения равен 360º. На практике часто случается, что как радиус дуги, так и угол неизвестны. В этом случае длина дуги может быть вычислена по приближённой формуле Гюйгенса:

p 2l + (2l – L ) / 3 ,

где (см. рис.42): p – длина дуги ACB ; l – длина хорды AC ; L – длина хорды AB . Если дуга содержит не более чем 60 º , относительная погрешность этой формулы не превышает 0.5%.

Соотношения между элементами круга. Вписанный угол ( ABC , рис.45) равен половине центрального угла , опирающегося на ту же дугу AmC ( AOC , рис.45) . Поэтому, все вписанные углы (рис.45), опирающиеся на одну и ту же дугу ( Am C , рис.45), равны. А так как центральный угол содержит тоже количество градусов, чтои его дуга ( Am C ,рис.45), то любой вписанный угол измеряется половиной дуги, на которую он опирается (внашем случае Am C ).

Loading...Loading...